\(\int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx\) [967]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 39 \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=-\frac {1}{6} \sqrt {2-3 x^2} \sqrt {-1+3 x^2}-\frac {1}{12} \arcsin \left (3-6 x^2\right ) \]

[Out]

1/12*arcsin(6*x^2-3)-1/6*(-3*x^2+2)^(1/2)*(3*x^2-1)^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {455, 52, 55, 633, 222} \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=-\frac {1}{12} \arcsin \left (3-6 x^2\right )-\frac {1}{6} \sqrt {2-3 x^2} \sqrt {3 x^2-1} \]

[In]

Int[(x*Sqrt[-1 + 3*x^2])/Sqrt[2 - 3*x^2],x]

[Out]

-1/6*(Sqrt[2 - 3*x^2]*Sqrt[-1 + 3*x^2]) - ArcSin[3 - 6*x^2]/12

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 55

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[1/Sqrt[a*c - b*(a - c)*x - b^2*x^2]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b + d, 0] && GtQ[a + c, 0]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 633

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*(-4*(c/(b^2 - 4*a*c)))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {\sqrt {-1+3 x}}{\sqrt {2-3 x}} \, dx,x,x^2\right ) \\ & = -\frac {1}{6} \sqrt {2-3 x^2} \sqrt {-1+3 x^2}+\frac {1}{4} \text {Subst}\left (\int \frac {1}{\sqrt {2-3 x} \sqrt {-1+3 x}} \, dx,x,x^2\right ) \\ & = -\frac {1}{6} \sqrt {2-3 x^2} \sqrt {-1+3 x^2}+\frac {1}{4} \text {Subst}\left (\int \frac {1}{\sqrt {-2+9 x-9 x^2}} \, dx,x,x^2\right ) \\ & = -\frac {1}{6} \sqrt {2-3 x^2} \sqrt {-1+3 x^2}-\frac {1}{36} \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{9}}} \, dx,x,9 \left (1-2 x^2\right )\right ) \\ & = -\frac {1}{6} \sqrt {2-3 x^2} \sqrt {-1+3 x^2}-\frac {1}{12} \sin ^{-1}\left (3-6 x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.36 \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=\frac {1}{6} \left (-\sqrt {-2+9 x^2-9 x^4}+2 \arctan \left (\frac {\sqrt {-1+3 x^2}}{-1+\sqrt {2-3 x^2}}\right )\right ) \]

[In]

Integrate[(x*Sqrt[-1 + 3*x^2])/Sqrt[2 - 3*x^2],x]

[Out]

(-Sqrt[-2 + 9*x^2 - 9*x^4] + 2*ArcTan[Sqrt[-1 + 3*x^2]/(-1 + Sqrt[2 - 3*x^2])])/6

Maple [A] (verified)

Time = 3.14 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.54

method result size
default \(\frac {\sqrt {3 x^{2}-1}\, \sqrt {-3 x^{2}+2}\, \left (\arcsin \left (6 x^{2}-3\right )-2 \sqrt {-9 x^{4}+9 x^{2}-2}\right )}{12 \sqrt {-9 x^{4}+9 x^{2}-2}}\) \(60\)
elliptic \(\frac {\sqrt {-\left (3 x^{2}-2\right ) \left (3 x^{2}-1\right )}\, \left (\frac {\arcsin \left (6 x^{2}-3\right )}{12}-\frac {\sqrt {-9 x^{4}+9 x^{2}-2}}{6}\right )}{\sqrt {-3 x^{2}+2}\, \sqrt {3 x^{2}-1}}\) \(65\)
risch \(\frac {\left (3 x^{2}-2\right ) \sqrt {3 x^{2}-1}\, \sqrt {\left (3 x^{2}-1\right ) \left (-3 x^{2}+2\right )}}{6 \sqrt {-\left (3 x^{2}-2\right ) \left (3 x^{2}-1\right )}\, \sqrt {-3 x^{2}+2}}+\frac {\arcsin \left (6 x^{2}-3\right ) \sqrt {\left (3 x^{2}-1\right ) \left (-3 x^{2}+2\right )}}{12 \sqrt {-3 x^{2}+2}\, \sqrt {3 x^{2}-1}}\) \(109\)

[In]

int(x*(3*x^2-1)^(1/2)/(-3*x^2+2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/12*(3*x^2-1)^(1/2)*(-3*x^2+2)^(1/2)*(arcsin(6*x^2-3)-2*(-9*x^4+9*x^2-2)^(1/2))/(-9*x^4+9*x^2-2)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 65 vs. \(2 (31) = 62\).

Time = 0.27 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.67 \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=-\frac {1}{6} \, \sqrt {3 \, x^{2} - 1} \sqrt {-3 \, x^{2} + 2} - \frac {1}{12} \, \arctan \left (\frac {3 \, \sqrt {3 \, x^{2} - 1} {\left (2 \, x^{2} - 1\right )} \sqrt {-3 \, x^{2} + 2}}{2 \, {\left (9 \, x^{4} - 9 \, x^{2} + 2\right )}}\right ) \]

[In]

integrate(x*(3*x^2-1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

-1/6*sqrt(3*x^2 - 1)*sqrt(-3*x^2 + 2) - 1/12*arctan(3/2*sqrt(3*x^2 - 1)*(2*x^2 - 1)*sqrt(-3*x^2 + 2)/(9*x^4 -
9*x^2 + 2))

Sympy [A] (verification not implemented)

Time = 1.50 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.87 \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=- \frac {\sqrt {2 - 3 x^{2}} \sqrt {3 x^{2} - 1}}{6} + \frac {\operatorname {asin}{\left (\sqrt {3 x^{2} - 1} \right )}}{6} \]

[In]

integrate(x*(3*x**2-1)**(1/2)/(-3*x**2+2)**(1/2),x)

[Out]

-sqrt(2 - 3*x**2)*sqrt(3*x**2 - 1)/6 + asin(sqrt(3*x**2 - 1))/6

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.69 \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=-\frac {1}{6} \, \sqrt {-9 \, x^{4} + 9 \, x^{2} - 2} + \frac {1}{12} \, \arcsin \left (6 \, x^{2} - 3\right ) \]

[In]

integrate(x*(3*x^2-1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

-1/6*sqrt(-9*x^4 + 9*x^2 - 2) + 1/12*arcsin(6*x^2 - 3)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.85 \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=-\frac {1}{6} \, \sqrt {3 \, x^{2} - 1} \sqrt {-3 \, x^{2} + 2} + \frac {1}{6} \, \arcsin \left (\sqrt {3 \, x^{2} - 1}\right ) \]

[In]

integrate(x*(3*x^2-1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

-1/6*sqrt(3*x^2 - 1)*sqrt(-3*x^2 + 2) + 1/6*arcsin(sqrt(3*x^2 - 1))

Mupad [B] (verification not implemented)

Time = 7.20 (sec) , antiderivative size = 206, normalized size of antiderivative = 5.28 \[ \int \frac {x \sqrt {-1+3 x^2}}{\sqrt {2-3 x^2}} \, dx=-\frac {\mathrm {atan}\left (\frac {\sqrt {3\,x^2-1}-\mathrm {i}}{\sqrt {2}-\sqrt {2-3\,x^2}}\right )}{3}-\frac {-\frac {\sqrt {3\,x^2-1}-\mathrm {i}}{\sqrt {2}-\sqrt {2-3\,x^2}}+\frac {{\left (\sqrt {3\,x^2-1}-\mathrm {i}\right )}^3}{{\left (\sqrt {2}-\sqrt {2-3\,x^2}\right )}^3}+\frac {\sqrt {2}\,{\left (\sqrt {3\,x^2-1}-\mathrm {i}\right )}^2\,4{}\mathrm {i}}{3\,{\left (\sqrt {2}-\sqrt {2-3\,x^2}\right )}^2}}{\frac {2\,{\left (\sqrt {3\,x^2-1}-\mathrm {i}\right )}^2}{{\left (\sqrt {2}-\sqrt {2-3\,x^2}\right )}^2}+\frac {{\left (\sqrt {3\,x^2-1}-\mathrm {i}\right )}^4}{{\left (\sqrt {2}-\sqrt {2-3\,x^2}\right )}^4}+1} \]

[In]

int((x*(3*x^2 - 1)^(1/2))/(2 - 3*x^2)^(1/2),x)

[Out]

- atan(((3*x^2 - 1)^(1/2) - 1i)/(2^(1/2) - (2 - 3*x^2)^(1/2)))/3 - (((3*x^2 - 1)^(1/2) - 1i)^3/(2^(1/2) - (2 -
 3*x^2)^(1/2))^3 - ((3*x^2 - 1)^(1/2) - 1i)/(2^(1/2) - (2 - 3*x^2)^(1/2)) + (2^(1/2)*((3*x^2 - 1)^(1/2) - 1i)^
2*4i)/(3*(2^(1/2) - (2 - 3*x^2)^(1/2))^2))/((2*((3*x^2 - 1)^(1/2) - 1i)^2)/(2^(1/2) - (2 - 3*x^2)^(1/2))^2 + (
(3*x^2 - 1)^(1/2) - 1i)^4/(2^(1/2) - (2 - 3*x^2)^(1/2))^4 + 1)